Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.822
Filtrar
1.
J Asian Nat Prod Res ; : 1-8, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38560992

RESUMO

Two new iridoid glycosides, piasezkiiosides A (1) and B (2), were isolated from aqueous extract of the whole plant of Rehmannia piasezkii. Their structures were established from the spectroscopic data, chemical transformation, and X-ray diffraction analysis. Compound 1 exhibited weak hepatoprotective activity against APAP-induced HepG2 cell damage.

2.
Mol Biol Rep ; 51(1): 497, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598010

RESUMO

Helicobacter pylori (H. pylori) is a gram-negative bacteria with a worldwide infection rate of 50%, known to induce gastritis, ulcers and gastric cancer. The interplay between H. pylori and immune cells within the gastric mucosa is pivotal in the pathogenesis of H. pylori-related disease. Following H. pylori infection, there is an observed increase in gastric mucosal macrophages, which are associated with the progression of gastritis. H. pylori elicits macrophage polarization, releases cytokines, reactive oxygen species (ROS) and nitric oxide (NO) to promote inflammatory response and eliminate H. pylori. Meanwhile, H. pylori has developed mechanisms to evade the host immune response in order to maintain the persistent infection, including interference with macrophage phagocytosis and antigen presentation, as well as induction of macrophage apoptosis. Consequently, the interaction between H. pylori and macrophages can significantly impact the progression, pathogenesis, and resolution of H. pylori infection. Moreover, macrophages are emerging as potential therapeutic targets for H. pylori-associated gastritis. Therefore, elucidating the involvement of macrophages in H. pylori infection may provide novel insights into the pathogenesis, progression, and management of H. pylori-related disease.


Assuntos
Gastrite , Helicobacter pylori , Humanos , Macrófagos , Fagocitose , Apoptose
3.
Plant Dis ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568794

RESUMO

Green-stem forsythia (Forsythia viridissima), also known as golden bell, is cultivated widely in China as an early spring flowering shrub. In July 2020, yellow or white vein clearing symptoms on leaves were observed in approximate 15% golden bell plants along a landscape river in Ningbo city, Zhejiang province, China. Symptomatic leaves from six different plants were collected and pooled. Total RNA was extracted from about 200 mg pooled sample using TRIzol Reagent (Invitrogen, Carlsbad, USA) and used for high-throughput sequencing (HTS). The cDNA library was constructed using a TruSeq RNA Sample Preparation Kit (Illumina) and an Illumina NovaSeq 6000 platform was utilized to yield 150 nt paired-end reads. CLC Genomic Workbench 11 (QIAGEN) with default parameters were used for data analysis. A total of 41,604,174 paired-end reads were obtained, and 156,853 contigs (16 - 26,665 nt) were generated de novo and compared with sequences in the NCBI nt and nr database using BLASTn and BLASTx, respectively. A total of 197,277 reads were mapped to the citrus leaf blotch virus (CLBV; genus Citrivirus, family Betaflexiviridae) genome with an average coverage of 3191×. A contig of 8783 nt (excluding the poly(A) tail) was aligned to CLBV isolate Vib (accession No. OP751940) by BLASTn with the highest nt sequence identity of 99.7% and 99% query coverage, suggesting that the samples were infected with CLBV (Myung-Hwi Kim et al. 2023). No other virus was detected by this analysis. Subsequently, leaves of the six plants collected above, three plants with mild chlorotic symptoms and three plants without obvious symptoms were tested separately by RT-PCR and all were positive for CLBV. Sap from multiple symptomatic F. viridissima leaves was mechanically inoculated to Nicotiana benthamiana, N. tabacum and Datura stramonium in sextuplicate, but after two months, none of the inoculated plants had obvious symptoms and all of them tested negative for CLBV using RT-PCR. To determine the genome sequence of CLBV present in F. viridissima, a single sample from one plant was selected for genome validtion. The contig sequence was confirmed by Sanger sequencing of RT-PCR products amplified using CLBV-specific primers, and the 5' terminal sequence of the virus was determined using a commercial SUPERSWITCH RACE cDNA Synthesis Kit (Tiosbio, Beijing, China). The complete genomic sequence of CLBV isolated from F. viridissima was 8787 nts long, excluding the poly(A) tail, has the expected three predicted ORFs and was deposited in the GenBank database (accession no. OR766026). Phylogenetic analysis of different CLBV genome sequences from fruit trees and other hosts in GenBank using MEGA11 showed that the golden bell isolate was most closely related to isolate Vib (OP751940) from Viburnum lentago in South Korea, with which it was almost identical (99.7% complete nt sequence identity and >99% aa sequence identity in each of the three ORFs). Ten viruses have been previously reported from Forsythia spp. (Kaminska, M. 1985; Lee et al. 1997), but this is the first report of CLBV in this host. CLBV mainly infects citrus, kiwifruit and apple causing mosaic, chlorosis or yellow vein clearing symptoms, however, bud union disorder was observed in 'Nagami' kumquat infected by CLBV, which caused serious production losses (Cao et al. 2017; Li et al. 2018; Liu et al. 2019; Galipienso et al. 2001). Therefore, further investigation is needed to assess if F. viridissima can be an intermediate host to transfer CLBV to other crops.

4.
Opt Express ; 32(6): 8974-8985, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571142

RESUMO

Metasurfaces hold great promise for terahertz (THz) chiral-optical devices. Here, we proposed a chiral THz metasurface with quasi-bound state in the continuum (BIC) for maximum chirality. By exploiting structural perturbations of the dipole displacement and the diverging angle for the THz metasurface, the symmetry-protected BIC transforms into quasi-BIC. The critical coupling condition is satisfied by the introduction of graphene, enabling the theoretical maximum absorption of the quasi-BIC. Subsequently, the perturbations are balanced to obtain maximum chirality. The numerical simulations show that the THz metasurface exhibits strong linear chirality with the circular dichroism (CD) of 0.99 at the quasi-BIC. Additionally, the chiral third harmonic generation (THG) is achieved, characterized by high efficiency up to 19% and strong THG-CD as high as 0.99. It is expected that the THz metasurfaces has great potential for applications in chiral sensing and imaging.

5.
Mol Genet Genomic Med ; 12(4): e2439, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613222

RESUMO

OBJECTIVE: To characterize the phenotype spectrum, diagnosis, and response to growth-promoting therapy in patients with ACAN variants causing familial short stature. METHODS: Three families with ACAN variants causing short stature were reported. Similar cases in the literature were summarized, and the genotype and phenotype were analyzed. RESULTS: Three novel heterozygous variants, c.757+1G>A, (splicing), c.6229delG, p.(Asp2078Tfs*1), and c.6679C>T, p.(Gln2227*) in the ACAN gene were identified. A total of 314 individuals with heterozygous variants from 105 families and 8 individuals with homozygous variants from 4 families were confirmed to have ACAN variants from literature and our 3 cases. Including our 3 cases, the variants reported comprised 33 frameshift, 39 missense, 23 nonsense, 5 splicing, 4 deletion, and 1 translocation variants. Variation points are scattered throughout the gene, while exons 12, 15, and 10 were most common (25/105, 11/105, and 10/105, respectively). Some identical variants existing in different families could be hot variants, c.532A>T, p.(Asn178Tyr), c.1411C>T, p.(Gln471*), c.1608C>A, p.(Tyr536*), c.2026+1G>A, (splicing), and c.7276G>T, p.(Glu2426*). Short stature, early-onset osteoarthritis, brachydactyly, midfacial hypoplasia, and early growth cessation were the common phenotypic features. The 48 children who received rhGH (and GnRHa) treatment had a significant height improvement compared with before (-2.18 ± 1.06 SD vs. -2.69 ± 0.95 SD, p < 0.001). The heights of children who received rhGH (and GnRHa) treatment were significantly improved compared with those of untreated adults (-2.20 ± 1.10 SD vs. -3.24 ± 1.14 SD, p < 0.001). CONCLUSION: Our study achieves a new understanding of the phenotypic spectrum, diagnosis, and management of individuals with ACAN variants. No clear genotype-phenotype relationship of patients with ACAN variants was found. Gene sequencing is necessary to diagnose ACAN variants that cause short stature. In general, appropriate rhGH and/or GnRHa therapy can improve the adult height of affected pediatric patients caused by ACAN variants.


Assuntos
Nanismo , Hormônio do Crescimento Humano , Adulto , Humanos , Criança , Genótipo , Fenótipo , Heterozigoto , Homozigoto , Pacientes , Agrecanas
6.
Nanomaterials (Basel) ; 14(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38607104

RESUMO

The sensitive detection of antioxidants in food is essential for the rational control of their usage and reducing potential health risks. A simple three-dimensional (3D) electrode integrated with an anti-fouling/anti-interference layer possesses great potential for the direct and sensitive electrochemical detection of antioxidants in food samples. In this work, a 3D electrochemical sensor was developed by integrating a 3D graphene electrode (3DG) with vertically ordered mesoporous silica film (VMSF), enabling highly sensitive detection of the common antioxidant, butylated hydroxyanisole (BHA), in food samples. A simple electrochemical polarization was employed to pre-activate the 3DG electrode (p3DG), enhancing its hydrophilicity. Using the p3DG as the supporting electrode, stable modification of VMSF was achieved using the electrochemical assisted self-assembly (EASA) method, without the need for any adhesive agents (VMSF/p3DG). Taking BHA in food as a model analyte, the VMSF/p3DG sensor demonstrated high sensitivity, due to the enrichment by nanochannels, towards BHA. Electrochemical detection of BHA was achieved with a linear range of 0.1 µM to 5 µM and from 5 µM to 150 µM with a low limit of detection (12 nM). Owing to the fouling resistance and anti-interference capabilities of VMSF, the constructed 3D electrochemical sensor can be directly applied for the electrochemical detection of BHA in complex food samples.

7.
Nanomaterials (Basel) ; 14(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38607132

RESUMO

Wind energy holds potential for in-situ powering large-scale distributed wireless sensor nodes (WSNs) in the Internet of Things (IoT) era. To achieve high performance in wind energy harvesting, a coaxial counter-rotating triboelectric nanogenerator with lift-drag hybrid blades, termed CCR-TENG, has been proposed. The CCR-TENG, which can work in non-contact and soft-contact modes, realizes low-speed wind energy harvesting through a combination of counter-clockwise rotating lift-type blades and clockwise rotating drag-type blades. Non-contact CCR-TENG realizes low-speed wind energy harvesting at wind speeds as low as 1 m/s. The output of a CCR-TENG, working in soft-contact mode, achieves 41% promotion with a maximum short-circuit current of 0.11 mA and a peak surface power density of 6.2 W/m2 with two TENGs connected in parallel. Furthermore, the power density per unit of wind speed achieves 746 mW/m3·s/m. Consequently, two fluorescent lamps were successfully illuminated and six temperature sensors were continuously lit by the CCR-TENG. The reported CCR-TENG significantly improves low-speed environmental wind energy utilization and demonstrates broad application prospects for in-situ power supply of distributed wireless transmission devices and sensors in the era of the IoT.

8.
Phytomedicine ; 129: 155649, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38653154

RESUMO

BACKGROUND: Cardiovascular disease is the main cause of death and disability, with myocardial ischemia being the predominant type that poses a significant threat to humans. Reperfusion, an essential therapeutic approach, promptly reinstates blood circulation to the ischemic myocardium and stands as the most efficacious clinical method for myocardial preservation. Nevertheless, the restoration of blood flow associated with this process can potentially induce myocardial ischemia-reperfusion injury (MIRI), thereby diminishing the effectiveness of reperfusion and impacting patient prognosis. Therefore, it is of great significance to prevent and treat MIRI. PURPOSE: MIRI is an important factor affecting the prognosis of patients, and there is no specific in-clinic treatment plan. In this review, we have endeavored to summarize its pathological mechanisms and therapeutic drugs to provide more powerful evidence for clinical application. METHODS: A comprehensive literature review was conducted using PubMed, Web of Science, Embase, Medline and Google Scholar with a core focus on the pathological mechanisms and potential therapeutic drugs of MIRI. RESULTS: Accumulated evidence revealed that oxidative stress, calcium overload, mitochondrial dysfunction, energy metabolism disorder, ferroptosis, inflammatory reaction, endoplasmic reticulum stress, pyroptosis and autophagy regulation have been shown to participate in the process, and that the occurrence and development of MIRI are related to plenty of signaling pathways. Currently, a range of chemical drugs, natural products, and traditional Chinese medicine (TCM) preparations have demonstrated the ability to mitigate MIRI by targeting various mechanisms. CONCLUSIONS: At present, most of the research focuses on animal and cell experiments, and the regulatory mechanisms of each signaling pathway are still unclear. The translation of experimental findings into clinical practice remains incomplete, necessitating further exploration through large-scale, multi-center randomized controlled trials. Given the absence of a specific drug for MIRI, the identification of therapeutic agents to reduce myocardial ischemia is of utmost significance. For the future, it is imperative to enhance our understanding of the pathological mechanism underlying MIRI, continuously investigate and develop novel pharmaceutical agents, expedite the clinical translation of these drugs, and foster innovative approaches that integrate TCM with Western medicine. These efforts will facilitate the emergence of fresh perspectives for the clinical management of MIRI.

9.
PLoS Pathog ; 20(4): e1012142, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38574111

RESUMO

RNA viruses and viroids exist and evolve as quasispecies due to error-prone replication. Quasispecies consist of a few dominant master sequences alongside numerous variants that contribute to genetic diversity. Upon environmental changes, certain variants within quasispecies have the potential to become the dominant sequences, leading to the emergence of novel infectious strains. However, the emergence of new infectious variants remains unpredictable. Using mutant pools prepared by saturation mutagenesis of selected stem and loop regions, our study of potato spindle tuber viroid (PSTVd) demonstrates that mutants forming local three-dimensional (3D) structures similar to the wild type (WT) are more likely to accumulate in PSTVd quasispecies. The selection mechanisms underlying this biased accumulation are likely associated with cell-to-cell movement and long-distance trafficking. Moreover, certain trafficking-defective PSTVd mutants can be spread by functional sister genomes in the quasispecies. Our study reveals that the RNA 3D structure of stems and loops constrains the evolution of viroid quasispecies. Mutants with a structure similar to WT have a higher likelihood of being maintained within the quasispecies and can potentially give rise to novel infectious variants. These findings emphasize the potential of targeting RNA 3D structure as a more robust approach to defend against viroid infections.


Assuntos
Vírus de Plantas , Solanum tuberosum , Viroides , Viroides/genética , Solanum tuberosum/genética , RNA Viral/genética , RNA Viral/química , Quase-Espécies , Mutagênese , Doenças das Plantas , Vírus de Plantas/genética
10.
Phytochem Anal ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639052

RESUMO

INTRODUCTION: Smilacis Glabrae Rhizoma (SGR) is rich in chemical constituents with a variety of pharmacological activities. However, in-depth research has yet to be conducted on the chemical and pharmacodynamic constituents of SGR. MATERIALS AND METHODS: In this study, the chemical constituents of SGR were analyzed using liquid chromatography-mass spectrometry, and the pharmacodynamic compounds responsible for the medicinal effects of SGR were elucidated through a literature review. RESULTS: In total, 20 potentially new compounds, including 16 flavonoids (C19, C20, and C27-C40) and four phenylpropanoids (C107, C112, C113, and C118), together with 161 known ones were identified in the ethanol extract of SGR using liquid chromatography-mass spectrometry, and 25 of them were unequivocally identified by comparison with reference compounds. Moreover, 17 known constituents of them were identified in the plants of genus Smilax for the first time, and 16 were identified in the plant Smilax glabra Roxb. for the first time. Of 161 known compounds, 84 constituents (including isomers) have been reported to have 17 types of pharmacological activities, covering all known pharmacological activities of SGR; among these 84 bioactive constituents, six were found in the plants of genus Smilax for the first time and five were found in S. glabra for the first time, which are new bioactive constituents found in the plants of genus Smilax and the plant S. glabra, respectively. CONCLUSION: The results provide further information on the chemical composition of SGR, laying the foundation for the elucidation of the pharmacodynamic substances of SGR.

11.
Cell Rep Med ; : 101512, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38640931

RESUMO

Our previous work developed acoustic response bacteria, which enable the precise tuning of transgene expression through ultrasound. However, it is still difficult to visualize these bacteria in order to guide the sound wave to precisely irradiate them. Here, we develop ultrasound-visible engineered bacteria and chemically modify them with doxorubicin (DOX) on their surfaces. These engineered bacteria (Ec@DIG-GVs) can produce gas vesicles (GVs), providing a real-time imaging guide for remote hyperthermia high-intensity focused ultrasound (hHIFU) to induce the expression of the interferon (IFN)-γ gene. The production of IFN-γ can kill tumor cells, induce macrophage polarization from the M2 to the M1 phenotype, and promote the maturation of dendritic cells. DOX can be released in the acidic tumor microenvironment, resulting in immunogenic cell death of tumor cells. The concurrent effects of IFN-γ and DOX activate a tumor-specific T cell response, producing the synergistic anti-tumor efficacy. Our study provides a promising strategy for bacteria-mediated tumor chemo-immunotherapy.

12.
Plants (Basel) ; 13(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38611458

RESUMO

The coat protein (CP) is an important structural protein that plays many functional roles during the viral cycle. In this study, the CP of pepper mild mottle virus (PMMoV) was genetically fused to GFP using the foot-and-mouth disease virus peptide 2A linker peptide and the construct (PMMoV-GFP2A) was shown to be infectious. The systemic spread of the virus was monitored by its fluorescence in infected plants. Electron microscopy and immunocolloidal gold labelling confirmed that PMMoV-GFP2A forms rod-shaped particles on which GFP is displayed. Studies of tissue ultrastructure and virion self-assembly confirmed that PMMoV-GFP2A could be used to monitor the real-time dynamic changes of CP location during virus infection. Aggregations of GFP-tagged virions appeared as fluorescent plaques in confocal laser microscopy. Altogether, PMMoV-GFP2A is a useful tool for studying the spatial and temporal changes of PMMoV CP during viral infection.

13.
Int J Mol Sci ; 25(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38612822

RESUMO

Tomato brown rugose fruit virus (ToBRFV) is a newly-emerging tobamovirus which was first reported on tomatoes in Israel and Jordan, and which has now spread rapidly in Asia, Europe, North America, and Africa. ToBRFV can overcome the resistance to other tobamoviruses conferred by tomato Tm-1, Tm-2, and Tm-22 genes, and it has seriously affected global crop production. The rapid and comprehensive transcription reprogramming of host plant cells is the key to resisting virus attack, but there have been no studies of the transcriptome changes induced by ToBRFV in tomatoes. Here, we made a comparative transcriptome analysis between tomato leaves infected with ToBRFV for 21 days and those mock-inoculated as controls. A total of 522 differentially expressed genes were identified after ToBRFV infection, of which 270 were up-regulated and 252 were down-regulated. Functional analysis showed that DEGs were involved in biological processes such as response to wounding, response to stress, protein folding, and defense response. Ten DEGs were selected and verified by qRT-PCR, confirming the reliability of the high-throughput sequencing data. These results provide candidate genes or signal pathways for the response of tomato leaves to ToBRFV infection.


Assuntos
Solanum lycopersicum , Tobamovirus , Viroses , Solanum lycopersicum/genética , Frutas , Reprodutibilidade dos Testes , Perfilação da Expressão Gênica , Transcriptoma
14.
Front Med (Lausanne) ; 11: 1380369, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638932

RESUMO

This case report documents the first instance of Penicillin-Susceptible Methicillin-Resistant Staphylococcus aureus (PS-MRSA) in a Chinese psychiatric hospital. The strain was isolated from a patient with Alzheimer's disease who had a lower respiratory tract infection. Clinical and laboratory analyses, including mass spectrometry, antibiotic susceptibility testing, and whole-genome sequencing, confirmed the PS-MRSA strain. In this case, we systematically introduce the clinical symptoms, laboratory findings, and treatment responses associated with this PS-MRSA strain. This discovery offers a new perspective on our understanding of resistance mechanisms and expands our considerations for existing antibiotic treatments. It may fill a gap in the classification of MRSA strains, enhance the spectrum of MRSA resistance, and complete the therapeutic strategies for MRSA.

15.
Artigo em Inglês | MEDLINE | ID: mdl-38655615

RESUMO

SLC45A1 encodes a glucose transporter protein highly expressed in the brain. Mutations in SLC45A1 may lead to neurological diseases and developmental disorders, but its exact role is poorly understood. DNA G-quadruplexes (DNA G4s) are stable structures formed by four guanine bases and play a role in gene regulation and genomic stability. Changes in DNA G4s may affect brain development and function. The mechanism linking alterations in DNA G-quadruplex structures to SLC45A1 pathogenicity remains unknown. In this study, we identify a functional DNA G-quadruplex and its key binding site on SLC45A1 (NM_001080397.3: exon 2: c.449 G>A: p.R150K). This variant results in the upregulation of mRNA and protein expression, which may lead to intellectual developmental disorder with neuropsychiatric features. Mechanistically, the mutation is found to disrupt DNA G-quadruplex structures on SLC45A1, leading to transcriptional enhancement and a gain-of-function mutation, which further causes increased expression and function of the SLC45A1 protein. The identification of the functional DNA G-quadruplex and its effects on DNA G4s may provide new insights into the genetic basis of SLC45A1 pathogenicity and highlight the importance of DNA G4s of SLC45A1 in regulating gene expression and brain development.

16.
Neurol Neurochir Pol ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662104

RESUMO

INTRODUCTION: The aim of this study was to determine the serum biochemical markers that can predict the risk of haemorrhagic transformation (HT) before and after endovascular treatment (EVT). MATERIAL AND METHODS: This study included patients with anterior circulation large vessel occlusion (ACLVO) who underwent EVT within six hours of symptom onset between September 2017 and September 2022. These patients were retrospectively categorised into two groups: an HT group and a No-HT group. RESULTS: A total of 180 patients were included in the study, of whom 55 (30.6%) had HT. The monocyte count before EVT (p = = 0.005, OR = 0.694, 95% CI 0.536-0.898), the activated partial thromboplastin time before EVT (p = 0.009, OR = 0.186, 95% CI 0.699-0.952), and the eosinophil count after EVT (p = 0.038, OR = 0.001, 95% CI 0.000-0.018) were all found to be independent predictors of HT, with warning values of 6.65%, 22.95 seconds, and 0.035*10^9/L, respectively. When compared to prediction using only demographic data [AUC = 0.662,95% CI (0.545, 0.780)], adding biochemical indices before EVT [AUC = 0.719,95% CI (0.617, 0.821)], adding biochemical indices after EVT [AUC = 0.670,95% CI (0.566, 0.773)], and adding both [AUC = 0.778,95% CI (0.686, 0.870)], the prediction efficiency of HT was improved among all three combinations, with no statistical significance. CONCLUSIONS: The levels of serum biochemical markers were found to show significant changes before and after EVT in ACLVO patients. A combination of demographic data and serum biochemical markers proved to be effective in predicting the occurrence of HT in patients with ACLVO who underwent EVT.

17.
Chem Biodivers ; : e202400399, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38634752

RESUMO

Four undescribed prenylated flavonoids, sophoratones A-D (1-4), and 17 known flavonoids, were obtained from the aerial parts of Sophora tonkinensis. Their structures with absolute configurations were elucidated by detailed interpretation of NMR spectroscopy, mass spectrometry, and ECD calculations. Meanwhile, the ability of these compounds to inhibit the release of nitric oxide (NO) by a lipopolysaccharide induced mouse in RAW 264.7 cells was assayed. The results indicated that some compounds exhibited clear inhibitory effects, with IC50 ranging from 19.91 ± 1.08 to 35.72 ± 2.92 µM. These results suggest that prenylated flavonoids from the aerial parts of S. tonkinensis could potentially be used as a latent source of anti-inflammatory agents.

18.
J Hepatocell Carcinoma ; 11: 565-580, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525157

RESUMO

Background/Aims: Plumbagin (PL) has been shown to effe ctively inhibit autophagy, suppressing invasion and migration of hepatocellular carcinoma (HCC) cells. However, the specific mechanism remains unclear. This study aimed to investigate the effect of PL on tumor growth factor (TGF)-ß-induced epithelial-mesenchymal transition (EMT) in HCC. Methods: Huh-7 cells were cultured, and in vivo models of EMT and HCC-associated lung metastasis were developed through tail vein and in situ injections of tumor cells. In vivo imaging and hematoxylin and eosin staining were used to evaluate HCC modeling and lung metastasis. After PL intervention, the expression levels of Snail, vimentin, E-cadherin, and N-cadherin in the liver were evaluated through immunohistochemistry and Western blot. An in vitro TGF-ß-induced cell EMT model was used to detect Snail, vimentin, E-cadherin, and N-cadherin mRNA levels through a polymerase chain reaction. Their protein levels were detected by immunofluorescence staining and Western blot. Results: In vivo experiments demonstrated that PL significantly reduced the expression of Snail, vimentin, and N-cadherin, while increasing the expression of E-cadherin at the protein levels, effectively inhibiting HCC and lung metastasis. In vitro experiments confirmed that PL up-regulated epithelial cell markers, down-regulated mesenchymal cell markers, and inhibited EMT levels in HCC cells. Conclusion: PL inhibits Snail expression, up-regulates E-cadherin expression, and down-regulates N-cadherin and vimentin expression, preventing EMT in HCC cells and reducing lung metastasis.

19.
J Cancer ; 15(8): 2110-2122, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495508

RESUMO

Background: DHEA is a steroid hormone produced by the gonads, adrenal cortex, brain, and gastrointestinal tract. While the anti-obesity, anti-atherosclerosis, anti-cancer, and memory-enhancing effects of DHEA have been substantiated through cell experiments, animal studies, and human trials, the precise mechanisms underlying these effects remain unclear. Altered mitochondrial dynamics can lead to mitochondrial dysfunction, which is closely related to many human diseases, especially cancer and aging. This study was to investigate whether DHEA inhibits lung adenocarcinoma through the mitochondrial pathway and its molecular mechanism. Methods: Through animal experiments and cell experiments, the effect of DHEA on tumor inhibition was determined. The correlation between FASTKD2 expression and DHEA was analyzed by Western blot, Reverse transcription-quantitative PCR, Immunohistochemistry, and TCGA database. Results: In this study, DHEA supplementation in the diet can inhibit the tumor size of mice, and the effect of adding DHEA one week before the experiment is the best. DHEA limits the glycolysis process by inhibiting G6PDH activity, increases the accumulation of reactive oxygen species, and initiates apoptosis in the mitochondrial pathway of cancer cells. Conclusion: DHEA suppresses mitochondrial fission and promotes mitochondrial fusion by downregulating the expression of FASTKD2, thereby inhibiting tumor growth and prolonging the overall survival of lung adenocarcinoma patients, which also provides a new target for the prevention and treatment of lung adenocarcinoma.

20.
Adv Sci (Weinh) ; : e2309557, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38516754

RESUMO

Digital PCR (dPCR) holds immense potential for precisely detecting nucleic acid markers essential for personalized medicine. However, its broader application is hindered by high consumable costs, complex procedures, and restricted multiplexing capabilities. To address these challenges, an all-in-one dPCR system is introduced that eliminates the need for microfabricated chips, offering fully automated operations and enhanced multiplexing capabilities. Using this innovative oscillation-induced droplet generation technique, OsciDrop, this system supports a comprehensive dPCR workflow, including precise liquid handling, pipette-based droplet printing, in situ thermocycling, multicolor fluorescence imaging, and machine learning-driven analysis. The system's reliability is demonstrated by quantifying reference materials and evaluating HER2 copy number variation in breast cancer. Its multiplexing capability is showcased with a quadruplex dPCR assay that detects key EGFR mutations, including 19Del, L858R, and T790M in lung cancer. Moreover, the digital stepwise melting analysis (dSMA) technique is introduced, enabling high-multiplex profiling of seven major EGFR variants spanning 35 subtypes. This innovative dPCR system presents a cost-effective and versatile alternative, overcoming existing limitations and paving the way for transformative advances in precision diagnostics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA